

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject: PHYSICS

Paper: C8-T

Mathematical Physics - III

Full Marks: 40

Time: 2 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Group - A

Answer any four questions:

 $5 \times 4 = 20$

- 1. What is Cauchy Riemann condition. Apply on the function $f(z) = |z|^2$ and comment on its analyticity.
- 2. Solve $\int_0^{2\pi} \frac{1}{3 + 2\cos\theta} d\theta$ by contour integration.
- 3. Find the Fourier transform of the function $f(x) = e^{-x^2}$.

P.T.O.

- 4. Find the Eigenvalues and Eigenfunction of a matrix $\begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$.
- 5. Using Cayley Hamilton Theorem find the inverse matrix $\begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix}$.
- 6. Find the residue of $f(z) = \frac{z}{(z-1)(z+1)^2}$ at all its singularities.

Group - B

Answer any two questions:

 $10 \times 2 = 20$

- 7. (a) Find the Fourier transform of the given function f(x) = 1 for |x| < a 0 for |x| > a
 - (b) Using contour integration evaluate the real integral $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}$.
- 8. (a) Find out the eigenvalues and Eigen vectors of the given Hermitian matrix (10+5)

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (b) Evaluate using Cauchy's integral formule $\int \frac{2z+1}{z^2-1} dz$ about $|z| = \frac{1}{2}$.
- 9. (a) Find the Fourier transform of the function $f(x) = \frac{e^{-ax}}{x}$.
 - (b) Evaluate the integral $\oint \frac{dz}{z-a}$ in the conventional positive sense, where C is any simply closed curve and z=a is a point inside C. What is the value of the integral, if z=a is outside C.

P.T.O.

- 10. (a) Find Fourier Cosine transform of $f(x) = e^{-ax}$, $(a > 0, x \ge 0)$.
 - (b) Find the Taylor series expansion of a function of the complex variable $f(z) = \frac{1}{(z-1)(z-3)} \text{ about the point } z = 4.$